3.364 \(\int \cos ^4(c+d x) \sqrt{a+a \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=160 \[ \frac{a (5 B+6 C) \sin (c+d x)}{8 d \sqrt{a \sec (c+d x)+a}}+\frac{\sqrt{a} (5 B+6 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{8 d}+\frac{a (5 B+6 C) \sin (c+d x) \cos (c+d x)}{12 d \sqrt{a \sec (c+d x)+a}}+\frac{a B \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(Sqrt[a]*(5*B + 6*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a*(5*B + 6*C)*Sin[c + d
*x])/(8*d*Sqrt[a + a*Sec[c + d*x]]) + (a*(5*B + 6*C)*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]
) + (a*B*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.33617, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.119, Rules used = {4072, 4015, 3805, 3774, 203} \[ \frac{a (5 B+6 C) \sin (c+d x)}{8 d \sqrt{a \sec (c+d x)+a}}+\frac{\sqrt{a} (5 B+6 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{8 d}+\frac{a (5 B+6 C) \sin (c+d x) \cos (c+d x)}{12 d \sqrt{a \sec (c+d x)+a}}+\frac{a B \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[a]*(5*B + 6*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a*(5*B + 6*C)*Sin[c + d
*x])/(8*d*Sqrt[a + a*Sec[c + d*x]]) + (a*(5*B + 6*C)*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]
) + (a*B*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3805

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a*Cot[
e + f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(a*(2*n + 1))/(2*b*d*n), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^4(c+d x) \sqrt{a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \cos ^3(c+d x) \sqrt{a+a \sec (c+d x)} (B+C \sec (c+d x)) \, dx\\ &=\frac{a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{6} (5 B+6 C) \int \cos ^2(c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{8} (5 B+6 C) \int \cos (c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{a (5 B+6 C) \sin (c+d x)}{8 d \sqrt{a+a \sec (c+d x)}}+\frac{a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{16} (5 B+6 C) \int \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{a (5 B+6 C) \sin (c+d x)}{8 d \sqrt{a+a \sec (c+d x)}}+\frac{a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}-\frac{(a (5 B+6 C)) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac{\sqrt{a} (5 B+6 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{8 d}+\frac{a (5 B+6 C) \sin (c+d x)}{8 d \sqrt{a+a \sec (c+d x)}}+\frac{a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.187851, size = 70, normalized size = 0.44 \[ \frac{2 \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} \left (B \text{Hypergeometric2F1}\left (\frac{1}{2},4,\frac{3}{2},1-\sec (c+d x)\right )+C \text{Hypergeometric2F1}\left (\frac{1}{2},3,\frac{3}{2},1-\sec (c+d x)\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(C*Hypergeometric2F1[1/2, 3, 3/2, 1 - Sec[c + d*x]] + B*Hypergeometric2F1[1/2, 4, 3/2, 1 - Sec[c + d*x]])*S
qrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/d

________________________________________________________________________________________

Maple [B]  time = 0.42, size = 580, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/192/d*(15*B*cos(d*x+c)^2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+18*C*cos(d*x+c)^2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))
^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+30*B*cos(d*x
+c)*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(
d*x+c)/cos(d*x+c))*sin(d*x+c)+36*C*cos(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)
*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+15*B*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+18*C*2^
(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)
/cos(d*x+c))*sin(d*x+c)+64*B*cos(d*x+c)^6+16*B*cos(d*x+c)^5+96*C*cos(d*x+c)^5+40*B*cos(d*x+c)^4+48*C*cos(d*x+c
)^4-120*B*cos(d*x+c)^3-144*C*cos(d*x+c)^3)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/cos(d*x+c)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.84536, size = 4024, normalized size = 25.15 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/96*((4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
 + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x
+ 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*sin(1/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*cos
(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 15*sqrt(a)*(arctan2(-(cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) + 1)
- arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))) - 1) - arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan
2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) +
 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + 1) + arctan2
((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
)^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1)))*B + 6*(2*(cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(
2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c))
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - cos(2*d*x
 + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - arctan2(
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x +
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1)))*C)/d

________________________________________________________________________________________

Fricas [A]  time = 0.652492, size = 898, normalized size = 5.61 \begin{align*} \left [\frac{3 \,{\left ({\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 6 \, C\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \,{\left (8 \, B \cos \left (d x + c\right )^{3} + 2 \,{\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \,{\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac{3 \,{\left ({\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 6 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) -{\left (8 \, B \cos \left (d x + c\right )^{3} + 2 \,{\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \,{\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/48*(3*((5*B + 6*C)*cos(d*x + c) + 5*B + 6*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x
+ c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*B*cos(d*x +
 c)^3 + 2*(5*B + 6*C)*cos(d*x + c)^2 + 3*(5*B + 6*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin
(d*x + c))/(d*cos(d*x + c) + d), -1/24*(3*((5*B + 6*C)*cos(d*x + c) + 5*B + 6*C)*sqrt(a)*arctan(sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (8*B*cos(d*x + c)^3 + 2*(5*B + 6*C)*cos(d*x +
 c)^2 + 3*(5*B + 6*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)
]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 6.70739, size = 1156, normalized size = 7.22 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/48*(3*(5*B*sqrt(-a)*sgn(cos(d*x + c)) + 6*C*sqrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(5*B*sqrt(-a)*sgn(cos(d*x + c)) + 6*C*s
qrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a
*(2*sqrt(2) - 3))) + 4*sqrt(2)*(63*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*B*
sqrt(-a)*a*sgn(cos(d*x + c)) - 30*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*C*s
qrt(-a)*a*sgn(cos(d*x + c)) - 369*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*B*sq
rt(-a)*a^2*sgn(cos(d*x + c)) + 66*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*C*sq
rt(-a)*a^2*sgn(cos(d*x + c)) + 1638*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*B*
sqrt(-a)*a^3*sgn(cos(d*x + c)) + 756*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C
*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 1074*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4
*B*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 732*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^
4*C*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 171*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))
^2*B*sqrt(-a)*a^5*sgn(cos(d*x + c)) + 138*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^2*C*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 13*B*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 6*C*sqrt(-a)*a^6*sgn(cos(d*x + c)
))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c)
 - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^3)/d